
Running parallel applications with topology-aware grid middleware

Pavel Bar1, Camille Coti2, Derek Groen3, Thomas Herault2, Valentin Kravtsov1,
Assaf Schuster1, Martin Swain4

1Technion - Israel Institute of Technology, Technion City, 32000, Haifa, Israel
2INRIA Saclay-Île de France, Orsay, F-91893, France

3Section Computational Science, University of Amsterdam, Amsterdam, The Netherlands
4University of Ulster, Cromore Road, Coleraine, BT52 1SA, Northern Ireland, UK

Abstract

The concept of topology-aware grid applications is de-
rived from parallelized computational models of complex
systems that are executed on heterogeneous resources, ei-
ther because they require specialized hardware for cer-
tain calculations, or because their parallelization is flex-
ible enough to exploit such resources. Here we describe
two such applications, a multi-body simulation of stellar
evolution, and an evolutionary algorithm that is used for
reverse-engineering gene regulatory networks. We then de-
scribe the topology-aware middleware we have developed
to facilitate the “modeling-implementing-executing” cycle
of complex systems applications. The developed middle-
ware allows topology-aware simulations to run on geo-
graphically distributed clusters with or without firewalls be-
tween them. Additionally, we describe advanced coalloca-
tion and scheduling techniques that take into account the
applications topologies. Results are given based on run-
ning the topology-aware applications on the Grid’5000 in-
frastructure.

1. Introduction

Many real-world systems involve large numbers of
highly interconnected heterogeneous elements. Such struc-
tures, known as complex systems, typically exhibit non-
linear behavior and emergence. Understanding so-called
complex systems is increasingly becoming a necessity in
science, business and engineering [4].

The term ’complex systems’ encompasses a vast vari-
ety of biological systems (e.g., gene-regulatory and neu-
ral networks), ecosystems (e.g., modeling of lakes), social
systems (e.g., simulating crowd behavior), business models

(e.g., simulating stock markets), and so on.
Possibly, the most striking common denominator of all

complex systems is the fact that the classic experimental
methodologies and research approaches plainly fail to al-
low prediction and control of their behavior. Accordingly,
for many real-world systems, computational modeling and
simulation is therefore the only practical method of devel-
oping an understanding of their properties. Such models
and simulations often require considerable computational
resources.

In this paper we propose a new approach for modeling
and executing complex system applications in collaborative
grid environments. Just as complex systems consist of many
interdependent parts that give rise to non-linear and emer-
gent properties determining their high-level functioning and
behavior, so computational models of complex systems may
be decomposed into interdependent components, connected
according to a specific topology, and capable of exploiting
different types of computational resources: this is what we
call topology-aware applications. The QosCosGrid project
has been designed specifically to support the execution of
such applications in collaborative grids [7]. We demonstrate
the entire process of “modeling-implementing-executing”
large scale, topology-aware applications by means of the
developed stand-alone components the QosCosGrid re-
source description schema, QosCosGrid version of Open
MPI, and the QosCosGrid Meta-Scheduler.

2 Background: topology-aware applications
and middleware

2.1 Topology-aware complex systems applications

Here we describe two parallelized topology-aware com-
putational models of complex systems that we have used for

2009 Fifth IEEE International Conference on e-Science

978-0-7695-3877-8/09 $26.00 © 2009 IEEE

DOI 10.1109/e-Science.2009.48

292

testing our topology-aware grid middleware.

2.1.1 A topology-aware evolutionary algorithm

Legend:

Genetic interaction/exchange

Migration

Individual

Population

Population 1

Population 2

Population 4

Site 1 Site 2

Population 3

Figure 1. A parallel, topology-aware evolu-
tionary algorithm.

An example of a topology-aware evolutionary algorithm
application is depicted in Figure 1. Evolutionary algorithms
use an approach inspired by biological evolution to iter-
atively evolve or optimize a population, where each indi-
vidual in a population is a potential solution to a technical
problem. In this particular example we are interested in dis-
covering a set of parameters that can be used to simulate the
dynamic behavior of gene regulatory networks as accurately
as possible.

The application shown in Figure 1 has been parallelized
in a manner that combines features of both cellular and
co-operative-island evolutionary algorithms, thus giving the
application a two-layer topology:

1. The island model comprises the higher layer of the
evolutionary algorithm. In the island model a genetic
population is divided into subpopulations, which are
optimized semi-independently from each other – indi-
viduals periodically migrate between island subpopu-
lations in order to overcome the problems associated
with a single population becoming “stuck” in a local
minima and thus failing to find the global minimum.

2. The cellular model is used to optimize the subpopu-
lations that comprise the lower layer of the evolution-

ary algorithm. In this case individuals in the subpop-
ulations are distributed upon a lattice topology so that
each individual exchanges genetic material only with
its immediate neighbors.

In this approach more frequent communications take
place in the lower layer and less frequent communications
in the higher layer. In Figure 1 the evolutionary algorithm
comprises four subpopulations distributed over two physi-
cal locations or sites. In general, however, the algorithm
can be divided into 1 or more subpopulations than can be
executed on 1 or more sites, and it is usually the case that 1
subpopulation, with its relatively frequent communication
pattern, is restricted to just 1 computational cluster on 1
site. However it is also possible for a population or subpop-
ulation to be executed across 1 or more sites, which may
be useful if an optimization problem requires a single large
population.

2.1.2 Cosmological N-body

The cosmological N-body code we use in this work is used
to perform gravity calculations on large volumes of dark-
matter. Inside the code, dark matter is represented as point-
particles, which are integrated over time using a combined
Tree/Particle-Mesh algorithm [11]. The integrator has been
specially optimized to take advantage of the Power6 archi-
tecture and the SSE2 instruction set, using the Phantom
GRAPE [8]. In addition, it has been successfully ported
to run across two supercomputers [9].

The code has been parallelized with QCG-OMPI using
a spatial decomposition, with processes containing subvol-
umes of the universe with equal particle quantities. When
run in parallel, the processes exchange particles with neigh-
boring processes to preserve the spatial decomposition of
particles throughout the simulation. In addition, some all-
to-all communications are performed to perform parallel
Fourier transformations, which are required by the Particle-
Mesh integrations. As the particles are distributed evenly
among the processes, the number of local tree force calcu-
lations and particle exchanges are similar for all processes.
Consequently, the simulation runs most efficiently on net-
work topologies which are sufficiently balanced in terms of
bandwidth, and are able to cope with the large number of
messages produced by all-to-all communications.

The simulation we perform in this work contains a to-
tal of 2563 particles mapped to a grid of 1283 mesh cells.
For our experiments, we perform one simulation step and
measure the time spent by the simulation.

2.2 Topology-aware grid middleware

In this section we describe the three main middle-
ware components used for facilitating the “modeling-

293

implementation-executing” cycle. The first component is
the QosCosGrid resource description model described in
section 2.2.1 that is used to model a topology-aware appli-
cation and its computing and networking requirements. The
second component described in section 2.2.2 is the QosCos-
Grid OMPI (QCG-OMPI) library that is used to implement
the application and in particular its most important part –
message passing protocol. The third component described
in section 2.2.3 is the QosCosGrid meta-scheduling system,
that is used for matching the available grid resources with
the application requirements and scheduling the topology-
aware jobs on the time axis.

2.2.1 Scheduling Input Format

Large-scale, topology-aware parallel applications may be
composed of hundreds to thousands of processes. In prac-
tice, these applications can be efficiently described in terms
of “process groups” rather than in terms of single processes.
This description can significantly minimize the size of a
given problem with no loss of description accuracy. For in-
stance, the MPI communicators abstraction usually implies
that all the machines in a certain communicator should have
similar properties and should be interconnected by similar
all-to-all links.

Figure 2 depicts the evolutionary algorithm application
presented in section 2.1.1 as described in the proposed
framework. In this request, a user asks for three process
groups called PG1 – PG3. Each process group is mapped
to a computing resource template that describes the prop-
erties of the requested identical machines. For example,
PG1 requires between 8 and 10 computing resources, each
of which conforming to a certain computing resource tem-
plate. The properties of a computing resource template are
described in terms of ranges. For example, the computing
resource template requested by both PG1 and PG3 might
be specified as follows: [clock rate in range of 2...3GHz],
[memory in range of 1...2GB], and [free disk space in range
of 2...∞ GB].

Process groups (PGs) are arranged in process communi-
cation groups (PCGs) topology, where it is assumed that all
processes within a PCG would like to have all-to-all inter-
connections with certain properties. The quantitative prop-
erties of these interconnections are specified by means of
the network resource templates. For instance, PCG1 (red
circle) contains only processes of Process Group 1 (PG1),
which means that all the processes of PG1 must have all-
to-all interconnections as described in the PCG1’s network
resource template. On the other hand, PCG4 (purple cir-
cle) contains three process groups – PG1, PG2, and PG3,
which means that all the processes of these three PGs must
have all-to-all interconnections as described in the PCG4’s
network resource template. Given any two processes we

PCG 4

PCG 1

PCG 2

Process Communication Group (PCG)

Process Group (PG)

Computing Resource Template

Network Resource Template

|PG2|=
20..22

|PG1|=
8..10

IPG3|=
8..10

|PGi| Size of Process Group i

PCG 3

Figure 2. A sample request representation of
a topology-aware evolutionary algorithm ap-
plication

can determined the quality of their interconnection by look-
ing into the smallest circle (PCG) that contains these two
processes. Like the computing resource templates, the net-
work resource templates are described in terms of ranges.
A sample template might be specified as follows: [band-
width in range of 10...54Mbit/sec], and [latency in range of
0.001...0.01sec].

The aforementioned description format is called a re-
source topology graph (RTG). In addition to the comput-
ing and network resources description, the request RTG also
contains the estimated runtime of the requested task and op-
tional time bounds for the task’s execution.

Like the description of the requests, the offered machines
are also described in terms of an RTG. Figure 3 depicts
a sample offer which models the three selected Grid’5000
sites. The description of the offered resources contains the
details of the computing resources, such as memory and
disk space, and the properties of network resources. The
network resources are described in terms of resource com-
munication groups (RCGs), which, by definition, means
that all the resources within an RCG have identical all-to-all
interconnections. An offers RTG also contains the descrip-
tion of resource availability on the time axis.

It is important to stress that the purpose of the request
and offer RTGs is to simplify and make more efficient the
description of the requested and available resource topolo-
gies by users and system administrators. Additionally, to
simplify the description and avoid errors, the real values can
be replaced by several predefined parameter groups. For in-

294

Grid5000 selected clusters

Latency = HIGH

Orsay

Netgdx, 60 cores [2GHz]
Gdx, 372 cores [2GHz]

Bordeaux

Bordeplage, 102cores [3GHz]
Borderau, 372 cores [2.6GHz]
Bordemer, 96 cores [2.2GHz]

Rennes

Paramount, 132 cores [2.33GHz]
Paraquad, 264 cores [2.33GHz]
Paravent, 198 cores [2GHz]

Latency = LOW

Latency = LOW

Latency = LOW

Figure 3. A sample representation of selected
Grid’5000 machines

stance, the real latency values of the offered resource were
replaced by two groups of interest: “LOW/HIGH”.

2.2.2 QCG-OMPI

Parallel applications on grids run into the problem of com-
municating throughout the grid. Resources must be pro-
tected by security equipments such as firewalls and network
address translation (NAT) mechanisms, to prevent from ex-
ternal intrusions. On the other hand, processes of an ap-
plication spanning across multiple administrative domains
must be able to communicate with one another.

This issue was addressed in [3]. QCG-OMPI is an MPI
implementation targeted to computational grids, based on
OpenMPI [5] and relying on a set of grid services that pro-
vide advanced connectivity techniques. QCG-OMPI en-
ables communications between administrative domains in
spite of firewalls and NATs, without requiring any specific
configuration nor privileges. The architecture of the grid in-
frastructure supporting QCG-OMPI is depicted in Figure 4.

Several interconnection techniques are available: direct
connection (when two processes can communicate directly
with each other without requiring any specific setting), port
range method (when a [known] range of ports is open in the
firewall), Traversing TCP (when no port is open in the fire-
wall) and using proxy relays (when none of the aforemen-
tioned technique can be used). Traversing TCP has been
introduced by PVC [10], a communication middleware that
aims at enabling communications across administrative do-
mains.

QCG-OMPI also provides the possibility to retrieve

FRONTAL

CLUSTER NODE

CONNECTION
HELPER

BROKER PROXY

CLUSTER NODE

CONNECTION
HELPER

CONNECTION
HELPER

FRONTAL

CONNECTION
HELPER CONNECTION

HELPER

CONNECTION
HELPER

CLUSTER NODE

CLUSTER NODE

CLUSTER NODE

CLUSTER NODE

Figure 4. Architecture of the grid infrastruc-
ture of QCG-OMPI

process group PG1 PG1 PG2 PG2 PG3 PG3
rank 0 1 2 3 4 5

depth 2 2 2 2 2 2

colors PCG4 PCG4 PCG4 PCG4 PCG4 PCG4
PCG1 PCG1 PCG2 PCG2 PCG3 PCG3

Table 1. Array of colors corresponding to the
topology depicted by Figure 2

topology information provided by the scheduler. As de-
scribed in section 3.2, the grid meta-scheduler allocates re-
sources with respect to the requirement provided by the user
(section 2.2.1). This topology information is transmitted to
QCG-OMPI through an environment variable, and stored
by the run-time environment as an MPI attribute.

The application can obtain this information at any mo-
ment during the execution (after the MPI library has been
initialized and before its finalization), as any MPI at-
tribute. The number of groups a process belongs to is
called its depth, and is stored under the attribute name
QCG TOPOLOGY DEPTH. The name of the groups de-
fined by the user are called colors, and is stored under
the attribute name QCG TOPOLOGY COLORS. QCG-OMPI
provides a QCG ColorToInt function to convert alpha-
numerical colors into integers that can be passed to the
MPI Comm split routine in order to create communica-
tors that fit the topology.

The example of topology depicted by Figure 2 is given
by Table 1. In this example each process group contains two
processes.

2.2.3 QosCosGrid Meta-Scheduler

The QosCosGrid Meta-Scheduler was build to solve two
problems: (1) Coallocation (placement) of the requested

295

processes to the appropriate offered resources; (2) Schedul-
ing of topology-aware applications on the times axis. In [6]
it was shown that even the coallocation of a single multi-
processors, topology-aware job to homogeneous clusters in
a single time slot is NP-complete and cannot be approxi-
mated by polynomial time algorithms. It is also clear that
scheduling of such topology-aware jobs is NP-complete as
it involves coallocating jobs according to a specified order.

The detailed implementation of the scheduling and coal-
location algorithms are presented elsewhere, while here we
will only describe the formalized model of the scheduling
and coallocation problems.

The scheduling system has three inputs: resource topol-
ogy graph (RTG) of requests, RTG of offers, and the
scheduling time slot. The scheduling time slot specifies the
time bounds of the scheduling round. It is dictated by the
scheduler invoker and may vary according to whether the
scheduling scenario is, for instance, recurrent or ad hoc.

2.2.4 Formalizing the resource request

The RTG of a requested task contains the description of
required resources, the task’s estimated runtime, and op-
tional runtime bounds: requestedstart and requestedend

between which the task must be executed (requestedend −
requestedstart ≥ runtime). This RTG is translated
into a graph G = (V,E), where |V | = n ver-
texes denote the task’s process groups (PGs). Each PG
(vi) requires a number of identical resources (a clus-
ter of identical machines) according to its size. The
sizes of PGs are given as ranges denoted by the vec-
tors CAPmin = [capmin1 , . . . , capminn

] and CAPmax =
[capmax1 , . . . , capmaxn

]. The properties of each ma-
chine in the requested clusters are presented as prop-
erty vectors Cmin = [cmin1 , . . . , cminn

] and Cmax =
[cmax1 , . . . , cmaxn

], where cmini
, cmaxi

denote the mini-
mal and the maximal quantitative properties of each re-
quired computing resource in cluster vi (e.g., FLOPS). Dif-
ferent quantitative properties might be described by multi-
ple property vectors.

The process communication groups are translated into
graph edges E, denoted by n-by-n adjacency matrices
Bmin and Bmax, where bminij

, and bmaxij
refer to the

minimal and maximal connectivity level of the machines in
cluster vi and vj . Matrices Bmin and Bmax represent the
communication latency between and within the requested
clusters as requested by the user.

2.2.5 Formalizing the resource offer

Analogously, an offer RTG is translated to a graph Ĝ =
(V̂ , Ê), where |V̂ | = m. Each vertex v̂j represents a
cluster of identical offered machines. A capacity vector

ˆCAP = [ˆcap1, . . . , ˆcapm] denotes the number of available

machines in each cluster. To simplify the formalization, we
will assume that each machine has a single CPU, although
extending the model to handle an unrestricted number of
CPUs per machine is straightforward, moreover, in the fol-
lowing sections, this assumption will be discarded. The
quantitative properties (e.g., FLOPS) of machines in each
cluster are denoted by the vector Ĉ = [ĉ1, . . . , ĉm]. In con-
trast to the request RTG, the offer RTG has no ranges, as it
represents the values of real machines in the grid.

An m-by-m adjacency matrix B̂ represents the edges’
properties (e.g., the latency within and between the m clus-
ters in the grid), assuming identical connectivity proper-
ties between all the machines in each cluster. Addition-
ally, each machine r in cluster j has a list of time slots
T = {(t1startrj

, t1endrj
), (t2startrj

, t2endrj
), ...} during which

the resource is marked as “available.”

2.2.6 Formalizing the output

The goal of the grid-level scheduler is to provide a schedul-
ing plan for a large number of requests and offers. For each
task, we define an n-by-m allocation matrix X in which the
term Xij = k represents an allocation of k processes of
a requested process group vi to an offered cluster v̂j . The
allocation matrix X must satisfy the following constraints:

∀i : 1 ≤ i ≤ n, capmini
≤

m∑
j=1

Xij ≤ capmaxi
, (1)

denoting that each process group must be served by a range
of capmini

. . . capmaxi
offered resources;

∀j : 1 ≤ j ≤ m,

n∑
i=1

Xij ≤ ˆcapj , (2)

denoting that an offered cluster j can serve at most ˆcapj

processes;

∀i, j : 1 ≤ i ≤ n, 1 ≤ j ≤ m,
ĉj > cmaxi

∨ ĉj < cmini
⇒ Xij = 0 (3)

denoting that if offered resources in cluster j do not match
the requested process group i, then no allocations are al-
lowed;

∀i, j, k, l : 1 ≤ j, l ≤ m, 1 ≤ i, k ≤ n,

sgn(XijXkl)bminik
≤ sgn(XijXkl)b̂jl ≤ bmaxik

,
(4)

denoting that the connectivity (edge) properties of the re-
quests must match the connectivity properties of offers1

1sgn(Xij) =

{
1 if Xij > 0
0 if Xij = 0

, as Xij ≥ 0

296

(formalized only for the latency metric due to space limi-
tations); and

∀i, j : 1 ≤ i ≤ n, 1 ≤ j ≤ m,
Xij ∈ {0, . . . ,min(capmaxi

, ˆcapj)}, (5)

denoting that the number of allocations is an integer.
In addition to the constraints on matrix X , there are the

following time constraints:

taskstart ≥ requestedstart ∧ taskend ≤ requestedend∧
taskend − taskstart = runtime,

(6)
denoting that the actual task’s start and end times must fit
the given bounds; and

∀i, j : 1 ≤ i ≤ n, 1 ≤ j ≤ m, Xij > 0 ⇒ ∃Rj =
{r1j , r2j , . . .},∀r ∈ Rj ,∃k : taskstart ≥ tkstartrj

∧
taskend ≤ tkendrj

∧ |R| = Xij

(7)
denoting that only “available” resources can be matched.

The output of the QosCosGrid Meta-Scheduler is the
scheduling plan where each given job i is scheduling to
run at time ti (if any) on a set of resources Ri. It is pos-
sible to measure the quality (utility) of a given scheduling
plan by many different parameters such as: resource utiliza-
tion percentage, fairness degree, task satisfaction percent-
age (where task is assumed to be more “satisfied” if it got
a higher percentage of requested resources), jobs makespan
(end time of the last scheduled job), etc. QosCosGrid Meta-
Scheduler can support any aforementioned utility function
as well as any combination of two or more utility functions.

3 Experimental Methodology

3.1 Implementing the applications with QCG-
OMPI

Processes of the application can obtain at run-time the
topology description as represented by table 1 by obtain-
ing the appropriate MPI attributes. They can decide what
they have to do regarding their color at a given depth, and
adapt their computation pattern. They can also use colors
to adapt their communication patterns. In particular, they
can build communicators that fit the requested communica-
tion groups using the MPI routine MPI Comm split().
The color used by MPI Comm split() is the integer
translation of the QCG alpha-numeric color, given by the
QCG ColorToInt() routine. Processes that do not be-
long to any communication group at a given depth are as-
signed the MPI UNDEFINED color, and create an invalid
communicator, as specified by the MPI standard.

Communications within process groups ought to use
these topology-aware communicators, as presented in [2].

3.2 Coallocation of Topology-Aware Applications

The algorithm of the coallocation procedure used for
mapping the aforementioned applications to the available
grid resources is described in [6]. Although this allocation
algorithm is heuristic in its nature, in all the tests performed
on the Grid’5000 infrastructure it provided the optimal re-
sults for coallocation of a single job because the available
resources are in fact clustered into relatively small number
of homogeneous clusters.

During all the experiments, the offered machines in-
cluded 1596 cores arranged in 8 clusters of homogeneous
machines spread on 3 physical sites (Orsay, Rennes, and
Bordeaux). One of our assumptions in the allocation proce-
dure of the evolutionary algorithm described in section 2.1.1
was that within the clusters we can expect relatively “good”
connectivity level, while between the clusters this connec-
tivity is relatively “bad”. This assumption is based on the
fact that other users are also utilizing inter-clusters links
thus reducing the available bandwidth. Thus, for example,
the hard constraint of the biological evolutionary algorithm
was that an island must not be divided between clusters,
while different islands can be allocation to the same or dif-
ferent clusters on different sites.

Another constraint posed by the evolutionary algorithm
application was that the provided resources per island
should be as homogeneous as possible in terms of the CPU
clock rate, while giving the preference to strongest CPUs.

4 Experimental Results

Experiments were run on the academic grid
Grid’5000 [1], a nation-wide experimental grid dedi-
cated to research. We used three sites, located in Orsay,
Rennes and Bordeaux, distant by several hundreds of
kilometers from each other. In Orsay the GdX cluster was
used, using AMD Opteron CPUs running at 2.4 GHz, in
Bordeaux the Bordereau cluster was used, using dual-core
AMD Opteron CPUs running at 2.6 GHz, and in Rennes
the Paradent cluster was used, using Intel Xeon CPUs
running at 2.5 GHz. Nodes are interconnected within
each cluster by a Gigabit Ethernet switch, and clusters
are interconnected by the Renater French Education and
Reseach Network using 10 Gb/s dark fiber.

4.1 Evolutionary Algorithm

Figure 5 displays average execution times for the evolu-
tionary algorithm (shown in Figure 1) to execute 300 itera-
tions using either 1 or 2 clusters located in Orsay and Bor-
deaux. As the number of cores is increased, so the popula-
tion size increases because each individual runs on a seper-
ate core – and the advantage of a larger population is that

297

 50

 55

 60

 65

 70

 75

 80

 0 20 40 60 80 100 120

tim
e

[s
]

number of cores (or total population size)

Orsay cluster
Bordeaux cluster

Cross-cluster, good allocation
Cross-cluster, bad allocation

Figure 5. Evolutionary algorithm scale-up.

optimal solutions are discovered more quickly. The clusters
run at different speeds (2.4 Ghz and 2.2 Ghz respectively).

The execution times are shown in Figure 5, first when
running single populations on each cluster independently
from each other, and then when performing a cross-cluster
run with the populations split into 2 subpopulations.

In the “good allocation” runs we have placed each sub-
population entirely on one of the clusters according to the
output of the coallocation algorithm, so that the frequent
communications take place within a single cluster; while
in the “bad allocation” runs we have placed each subpop-
ulation on both clusters, so that the communications must
travel between Orsay and Bordeaux at each iteration. The
figure shows a fairly constant increase in time between these
two runs due to this communication overhead. An impor-
tant feature of the figure is that it shows that the scalability
of a properly coallocated application (in a way that takes
into account the application topology) is almost equal to the
scalability of an application executed on a single cluster.

4.2 Cosmological N-body Integration

We have performed a series of runs with the Cosmolog-
ical N-body code to measure the performance when it is
mapped across multiple sites and using different resource
topologies. For these experiments we have used the three
aforementioned clusters, using between 16 and 128 pro-
cesses in total for each run. The performance results of
these runs are shown in Figure 6. Here the wall-clock time
is given as a function of the number of cores. Results are
shown for different topologies, with the thick black points
indicating two runs over all three sites. The 32 core run was
performed using 8 cores in Bordeaux, 16 cores in Orsay and
8 cores in Rennes, whereas the 64 core run was performed
using 24, 32 and 8 cores respectively.

 0

 10

 20

 30

 40

 50

 60

 70

 0 50 100 150 200

tim
e

[s
]

number of cores (total)

Bordeaux
Orsay

Rennes
Bordeaux and Orsay (equally split)

Bordeaux and Rennes (equally split)
Runs over all 3 sites

Figure 6. Cosmological N-body speed-up.

Due to the low-level optimizations implemented in the
code, the performance is strongly dependent on the underly-
ing hardware. The code performs best on the Rennes site for
a low number of cores, but as the number of cores is scaled
up, the performance in Orsay becomes comparatively better.
Consequently, a single-site simulation using 128 cores runs
most efficiently in Orsay. During our runs in the Bordeaux
site we were unable to use the most optimal network. This
is reflected in our results by a measured inferior scalability
over the number of cores. However, on a small number of
cores, where communication is less dominant, the code per-
formance is at the mid-point between the results obtained
at Rennes and Orsay. When the code is run across multiple
sites, it is about 20% slower when compared to a run with
the same number of cores on the slowest participating site.
However, a notable exception to this trend can be observed
in the performance of the runs using 128 cores. Here we
see that the run across Bordeaux and Orsay with 64 cores
per site performs better than the single site run using 128
cores in Bordeaux. The run across sites performs better in
this case because fewer processes are communicating over
the local network in Bordeaux, thereby limiting the network
load and preventing congestion from occurring.

5 Discussion

Resources in a grid differ in terms of computing proper-
ties, such as CPU speed, available memory, and how these
resources are aggregated into topologies. To have good per-
formances on grids, applications must be written in a way
that they are adapted to the topology of the grid.

For example, consider an evolutionary algorithm that we
want to study using a certain number of islands, and using
different numbers of islands. The problem is twofold: (1)
How to obtain the best performance using a given number

298

of islands; (2) How to schedule the successive experiments
in order to optimize the total makespan for the series of ex-
periments.

The first part of the problem consists in coallocating the
application processes to the proper computing resources in
a way that will also respect the connectivity requirements
of an application. For instance, if we want to run an evolu-
tionary algorithm on two islands, processes must be sched-
uled on a set of resources that are not more partitioned than
two resource groups. Typically, each process group must be
scheduled on a cluster.

The QosCosGrid approach allows the user to give
enough information to the grid meta-scheduler in order to
perform topology-aware coallocation. Other approaches
like MPICH-G2 or PACX-MPI discover the topology at
run-time, and do not guaranty any property on the resource
topology. For instance, an application can end up being
scheduled on five groups of resources, discover it at run-
time, build one island per group and converge differently
than if it had been using two islands. Another way to pro-
gram it would be to use a fixed island size, for example
splitting the processes into two groups of equal number of
elements, but then processes can be located anywhere.

The QosCosGrid middleware makes sure the applica-
tion is deployed on resources along an appropriate topol-
ogy, and provides the application with the possibility to
retrieve at run-time the topology that has been asked for.
This approach makes sure the aforementioned application
is scheduled over a number of resource groups that match
the requested number of process groups (in this example,
the number of islands) and let processes know at run-time
which group they belong to.

The second problem concerns the optimization of the
scheduling plan in order to minimize the total makespan or
any other utility function. If an application has to be exe-
cuted several times using various numbers of islands, and
the available resources span on clusters of various sizes,
the grid meta-scheduler can compute a fair makespan that
respects the requirements of the application and is usually
reasonably close to the optimal solution.

6 Conclusion

In this paper, we have presented a full software stack
for execution of complex system simulations on computa-
tional grids. This solution consists of a resource descrip-
tion schema for application modeling, an implementation
of message passing protocol that supports cross-cluster ex-
ecutions, and a scheduling framework for coallocation and
scheduling of topology-aware applications.

We presented two sample applications enabled for this
system whose performance results show that a properly

modeled, large-scale, tightly-coupled application can ben-
efit from the computational and storage power of grids.

The biggest advantage of this work is that the effort
needed to match the application’s communication and com-
puting scheme with the underlying topology is pushed to the
meta-scheduler, which allows the programmer to use static
load-balancing reducing the complexity of the application.
This is opposed to the previous attempts to adapt the appli-
cations to the physical topology requiring a dynamic adap-
tation of the application to the actual physical topology of
the infrastructure.

References

[1] F. Cappello et al. Grid’5000: A large scale and highly
reconfigurable grid experimental testbed. In Proc. of the
6th IEEE/ACM International Workshop on Grid Comput-
ing, pages 99–106, Seattle, Washington, USA, Nov. 2005.
IEEE/ACM.

[2] C. Coti, T. Herault, and F. Cappello. MPI applications on
grids: a topology-aware approach. In L. N. in Computer Sci-
ence, editor, Proceedings of the 15th European Conference
on Parallel and Distributed Computing, volume 5704, pages
466–477, Delft, the Netherlands, August 2009.

[3] C. Coti, T. Herault, S. Peyronnet, A. Rezmerita, and F. Cap-
pello. Grid services for MPI. In 8th International Sym-
posium on Cluster Computing and the Grid (CCGRID’08),
pages 417–424. IEEE Computer Society, 2008.

[4] R. L. Flood and E. R. Carson. Dealing with complexity: an
introduction to the theory and applications of systems sci-
ence. Plenum Press, New York, NY, USA, 1993.

[5] E. Gabriel et al. Open MPI: Goals, concept, and design of a
next generation MPI implementation. In Proceedings, 11th
European PVM/MPI Users’ Group Meeting, pages 97–104,
Budapest, Hungary, September 2004.

[6] V. Kravtsov, M. Swain, U. Dubin, W. Dubitzky, and
A. Schuster. A fast and efficient algorithm for topology-
aware coallocation. In ICCS, pages 274–283, 2008.

[7] K. Kurowski et al. Complex system simulations with
qoscosgrid. In ICCS, pages 387–396, LA, USA, 2009.

[8] K. Nitadori, J. Makino, and P. Hut. Performance tuning of
N-body codes on modern microprocessors: I. Direct inte-
gration with a hermite scheme on x86 64 architecture. New
Astronomy, 12:169–181, Dec. 2006.

[9] S. Portegies Zwart, T. Ishiyama, D. Groen, K. Nitadori,
J. Makino, C. de Laat, S. McMillan, K. Hiraki, S. Harfst,
and P. Grosso. Simulating the universe on an interconti-
nental grid of supercomputers. IEEE Computer (submitted),
2009.

[10] A. Rezmerita, T. Morlier, V. Néri, and F. Cappello. Private
virtual cluster: Infrastructure and protocol for instant grids.
In 12th International Euro-Par Conference, volume 4128 of
Lecture Notes in Computer Science, pages 393–404, Dres-
den, Germany, 2006. Springer.

[11] K. Yoshikawa and T. Fukushige. PPPM and TreePM Meth-
ods on GRAPE Systems for Cosmological N-Body Simula-
tions. PASJ, 57:849–860, Dec. 2005.

299

